If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-6r-5=0
a = 1; b = -6; c = -5;
Δ = b2-4ac
Δ = -62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{14}}{2*1}=\frac{6-2\sqrt{14}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{14}}{2*1}=\frac{6+2\sqrt{14}}{2} $
| 3x/4-2=22 | | 9/n−83=90 | | 3x4-2=22 | | 9(n−83)=90 | | 3x4-2=22 | | v+169=7 | | 5x+9=3x-7 | | 5p−5=15 | | 5x^2-5x-3.75=0 | | 71=6t+11 | | y−20/9=7 | | x+2×4=20 | | 4(5x+1)=1/2(20x+16)+(16 | | 5p−14=8p+7 | | y=7/4(-22)-90.6 | | 3x+40=2x+140 | | (6x-10)=3x | | 69=m/8+61 | | 30=2u | | 6z+35=10 | | z-58/6=4 | | 7b^2-31b+20=0 | | 1x-3=-4 | | f+137=4 | | m/3-3=5 | | -6b+14=24 | | 3-3x=7x+4 | | 3x=‘54 | | 3x–5=13 | | 2x^2+3x-420=0 | | 6d−5d+3d=12 | | 15=v/2+12 |